	

		Z80 CARD CIRCUIT DESCRIPTION

The main circuit consists of 4 important chips, and they are :

1)	the Z80 8 bit Microprocessor

2)	PIO 0

3)	PIO 1

4)	PIO 2

The Z80 is responsible for communicating with the PC via these PIO chips. The PIO chips interface the Z80 into the PC system harmoniously. To achieve this, two completely different address systems were needed to be implemented. First, we have the address of the Card itself in the PC bus system which occupies four fully programmable address ports in all of the PC’s 64K addressable I/O space. These are all of the 74HCT688 comparator chips that are wired directly to the 8 bit ISA bus system of the PC. these function in the following way : four 8 way DIL switch blocks select the appropriate PC I/O address of the particular 74HCT688 they are connected too.

ISA I/O address lines A3 to A8 are used in the port decoding procedure. so, for example if the binary pattern 0110010 was selected across one of DIL blocks, the 74HCT688 will only bring its A=B line to 0 (active), when exactly the same pattern appears across the address lines A3 to A8 of the PC’s I/O Address space. the 74HCT688 which has its A=B connected to the BSTB input pin of PIO 0 will therefore send BSTB active low when 0110010 appears across A3 to A8 of the ISA bus of the PC. this line BSTB strobes in input data into the Z80 system from the 74HCT273 byte wide latch. When BSTB is active , it also creates an interrupt to the Z80 whereupon the Z80 enters the Machine Code routine held in the EPROM which enables it to communicate with the PC and do such interesting things as download to

and store in its personal RAM Memory, data which it needs that has been previously stored on the PC Hard Disk. this data is in fact information about what characters to send to the internal keyboard and mouse controllers upon a telephone ring activation, and also how long to wait between sending the PC commands.

Exactly how the Z80 Card communicates with the PC now follows :

a) The 74HCT273 8 bit latch is connected to a 688 decoding PC I/O address

&H05F. data flows to the Z80 from the PC.

b) The 74HCT688 decoding address &H062 operates a 74HCT245 8 bit transceiver which is wired so that data always flows from the Z80 to the PC.

c) The 74HCT688 decoding address &H061 operates another 74HCT245 but this time only 2 of the Z80’s control wires, HALT and PA7 on PIO 1 are read by the PC.

d) The 74HCT688 decoding &H060 operates BSTB of PIO 0 directly.

Now bearing this in mind, this is what happens when the Card is powered for

the first time :

The Z80 reads its program from 0000h onwards, it first of all checks for holes in its RAM if that’s OK, 2 bleeps can be heard on its own sounder this occurs because of an internal I/O operation peculiar only to the Z80 Card (more about this later). next it sends the 8 bit word 00h to Port A of PIO 0 and executes a HALT (76h) instruction. it now waits for valid data to appear across PB0 to PB7 of Port B of PIO 0. the PC now reads the Z80’s status, and by sensing that the HALT pin of the Z80 is now active, the PC reads the byte at I/O address &H062, this will be the 00h that the Z80 sent earlier, this word tells the PC to boot the Z80 Card config program in windows. once all the data has been entered into this program, the data must then be sent to the Z80 Card’s RAM Memory ready for processing by the Z80 upon reception of an incoming call. So, the PC and the Z80 enter into a communications loop until all the data has been sent, whereupon both CPU’s exit their programs.

 Now, the PC sends the first 8 bit word to I/O address &H05F, the byte is now stored in the latches of the 74HCT273 ready to be read by the Z80. after this the PC now activates BSTB which causes a maskable interrupt to occur to the Z80, the Z80 now deactivates HALT and executes the communications loop held in its EPROM system software (the particular address it jumps too cannot at this time be given as the system software has not been written yet!), once the byte has been read in by the Z80 with IN a,(n) the Z80 dumps this byte to a determined address in its RAM Memory ready to be used later. after this the Z80 reactivates HALT and waits for the next interrupt and byte to be sent. While in this loop the PC always waits for the Z80’s HALT line to go active before it attempts to send it another byte so that data does not get corrupted in the transfer process. as the two computers (the PC and Z80), are very powerful the transfer of 100 bytes takes a fraction of a second as the Z80 always executes pure Machine Code in all its operations with all devices. Now, when all the bytes have been sent, the last words that are sent to the Z80 are 00h, FFh, 00h, FFh respectively, and in that order. this of course uses four interrupts to the Z80, upon reading the last byte FFh, the Z80 forces the PC to leave the Card’s configuration program and brings the PC out to DOS prompt for Windows 3.* and DOS, or the ‘it is now safe to switch off your computer’ screen for Windows 95, after which, the Z80 waits a pre programmed time (this will have used some of the data the PC just passed over, as you will have to enter the amount of time it waits), after this time elapses the Z80 sends 0 to PA5 of PIO 1 upon which the Z80 disengages the PC’s power supply and resets waiting for a call. this bit PA5 controls a darlington transistor pair that connects 12v to the PC’s power relay only when PA5 of PIO 1 is at logic 1, this level (+3.2 volts), is continuously held by the Z80 until as such time the Z80 needs to turn

the PC off. The above procedure is the only necessary communication theZ80

Computer needs with the PC Computer in order for correct operation of the Z80 Card to ensue. All other communication with the PC from now on will be with only the internal keyboard (when the user is not present).unless a PC error has occurred, which is the subject of our next topic.

NON MASKABLE INTERRUPTS AND PC ERRORS

		

The Z80 has 2 types of hardware interrupt one of them is fully programmable in every sense of the word which is the one named INT, and has just been under discussion in our last chapter. the other type is the NMI interrupt which is not at all programmable, if this type of interrupt occurs during an INT service, the execution of that interrupt service will temporarily stop in favour of the Non Maskable Interrupt program which always starts at 0066h, after the execution of the NMI interrupt has completed, the Z80 continues where it left off in the INT interrupt program, after this has completed and there are no more NMI interrupts, the Z80 branches back to executing the main program once more.

 The NMI pin of the Z80 is an input active when at 0. this pin becomes active when the NE555 (yes, another one of those again.) timer brings the NMI wire to 0 volts. the activation of the NMI wire occurs at regular intervals of around once every 12 Seconds. the NMI service program starting at 0066h in the Z80’s EPROM, will contain a wealth of program jumps which relate to emergency service procedures that are relevant to both computers. The types of software procedures that will be run are as follows :

1.	Total Power Failure (Z80 Computer looses its RAM data) 01h

		2. disable Z80 Card Sounder 02h

		3. enable Z80 Sounder 03 h

		4. re enter keyboard data 04h

		5. re enter Mouse data 05h

		6. erase and re enter columb 1 sequence data 06h

		7. erase and re enter columb 2 sequence data 07h

		8. erase and re enter columb 3 sequence data 08h

		9. erase and re enter columb 4 sequence data 09h

		10. erase all data and start afresh 0Ah

		11. restore all corrupted RAM data from Hard Disk 0Bh

		12. run automated internal keyboard controller test 0Ch

		13. perform a total Z80 system self diagnostic 0Dh

		14. do nothing except return from NMI 00h

		15. Manually exit from W95 and switch off ready 4 calls 0Eh

		16. Manually exit from W3.* & switch off ready for calls 10h

		

These listed items will form the main part of all the jumps the Z80 needs to make when it receives an NMI pulse from the NE555. It works like this : the Z80 jumps to 0066h in the EPROM chip and then considers making jumps depending on what data is present on the 74HCT273 octal latch. as mentioned earlier, data arrives at this latch with the PC sending the data to the latches address which is default set to &H05F. For the PC to send data to this port in the first place, the PC must have booted a piece of software for itself to process. It is in fact the Human operator that selects the appropriate program on the PC. the PC then sends the appropriate word to address &H05F, and when the Z80 receives its interrupt, the byte is read into the Z80 via PIO 0 Port B. For example, if you wish to run the internal keyboard test, you first run on the PC a program called KEYBTE.EXE in windows, this will send the byte 0Dh to port &H05F, and when the Z80 gets the NMI pulse, the Z80 will jump to a predefined area in the EPROM which tells the Z80 how to interrogate the internal keyboard. this EPROM program will work in harmony with the PC, and all its output will be to the

Monitor screen so that you will be able to see all of what the Z80 is doing to its internal PC keyboard.

It is basically a similar story for all the others. once the NMI Machine

Code program has terminated, the Z80 sends a FFh to the PC’s input port

via port A of PIO 0 to the PC’s address &H062. this allows the windows

NMI application program to terminate as the PC now knows that the Z80 has

completed the test.

CIRCUIT DESCRIPTION OF THE INTERNAL KEYBOARD

This circuitry is based around Holtek’s HT6547B Keyboard Encoder chip. The

purpose of this IC is to send to the PC 8 bit words coded in serial fashion for a given X/Y cross hairs switch depression. This is in fact the very same chip that features as the main and if not the only one in all modern 102/104 key keyboards.

The switch matrix forms a 16 x 8 grid giving a total possible 128 switches. Of course, only up to 104 of them are used in this application. These 104 switches are all taken care of by two CD4067BE 16 line to 1 decoders. each of these IC’s has a nibble input from the Z80 which controls which of the 16 switches in the chip is selected. for example :

0 0 0 0 = switch 0 selected

0 0 0 1 --- - - -1 - - - - - -

0 0 1 0 - - - - -2 - - - - - -

1 1 1 1 = switch 15 selected

With the nibble lines stable, if a 0 then a 1 is applied to the INHIBIT pin of the 4067, a switch whose two connections become pin 1 COMMON and pin 14 (in the 1111 example) are briefly connected. Now, if these two pins are connected to one of the SCO and one of the SCI inputs of the HT6547B respectively, at the moment the INHIBIT went from 1 to 0, a character would be sent to the PC’s keyboard decoder on the motherboard and the PC would display the sent character. in this circuit however the two COMMON pins on the two 4067’s are wired together, thus two switches have to be made in any combination of both 4067’s in order for a circuit to be made and thus in order for the HT6547B to send a character to the PC.

as we are only interested in a 16 x 8 matrix, 8 of the switches on one of the 4067’s are wired to the GND rail in the circuitry and the appropriate bit of it’s control nibble not used and wired to GND. therefore only 3 bits of the 4067’s control nibble are used they are : 1,2,4 only. 8 is not used. Of course all 16 of the switches are used in the other 4067 chip, therefore the whole control nibble of this chip is used by the Z80. Thus as you can see, with the swoop of one byte the Z80 is able to depress and send to the PC any of the 104 characters in any combination, therefore very easily the Z80 can get the PC to execute any one of its .EXE programs written on its Hard Disk without you even typing a letter in !!.

CENTRAL PROCESSOR CIRCUIT DESCRIPTION

The Zilog Z80 has been with us a few years now, and of course has developed along at the same speed as the IBM series integrated circuits, to become now one of the worlds greatest 8 bit Central Processor Units ever built. It appears now in a variety of formats including the ubiquitous Microcontroller format. The current power is I believe 10Mhz Clock, 1 Mb Memory, on board clock, 32k RAM, and full 8 bit I/O porting.

This is all very well and good for other people, but I like to keep things a little more traditional when it comes to my choice of circuit design for the Z80. A quick glance at the circuit diagram in this design reveals that I have in fact designed my very own customised Microcontroller. The Microcontroller Circuit consists of in this case :

a)	Z80A 4Mhz CPU

b)	27128 16k x 8 250nS EPROM Memory

c)	2 x 2114 200nS 1k x 4 bit static RAM (2 of these gives 1k x 8)

d)	3 x Z80 PIO chips yielding 6 x 8 bit user ports in all

e)	74LS04 3 tier TTL clock @ 3.2768 Mhz

MEMORY

		

The memory for this circuit is controlled by a 74LS138 3 to 8 line decoder driver. The CPU Address line A14 controls the selection of the RAM or the EPROM Memory. MREQ is connected to bit 3 of the decoder chip and bit 2 is connected GND, thus the decoder can only switch in 2 binary patterns. The particular pattern depends on the logic state of the A14 line of the CPU. The two logic patterns therefore Are :

A0 A1 A2 -- all lines here belong to the 74LS138 decoder.

A14 M GND — these all belong to the CPU.

 R

 E

 Q

 a) 0 0 0 -- this means that the decoder enables its 0 output pin.

 b) 1 0 0 -- this means that the decoder enables its 1 output pin.

* the remaining decoder output pins are not used in this app *

When the CPU wishes to access valid memory, it brings the MREQ line low and active, it then places its address across its address lines and then activates its RD to read Memory or, WR to write to memory line, whereupon if A14 is 0, then the EPROM is read, but if A14 is at 1, then the RAM is read or written too. Now because A14 is connected to the decoders least significant bit, and the Memory is connected to the decoders least significant 2 output bits, the Memory is organised thus :

EPROM read only. A14 at 0. EPROM address range therefore between 0000h-3FFFh.

RAM read/write capability. A14 at 1. RAM address range therefore 4000h-4400h.

The reason why the RAM starts to be accessed 4000h onward is because A14 is when at logic 1,the equivalent of 0 + 256 * 64 = 16384.

4000h is the equivalent of 16384d. this address line remains at 1 for any CPU address above 16383 and below 32768 (A15 - not used).Conversely, when A14 is at logic 0, it means that address bits A0-A13 are being used only, this means address numbers in the range 0000h-3FFFh are valid here. And as the EPROM is connected to the 74LS138 0

output pin, this means that the EPROM Memory chip occupies this slot.

PIO 0 OPERATIONAL DESCRIPTION

	

All PIO Integrated Circuits in this main circuit design yield 2 x 8 bit fully programmable I/O ports. The programming Modes for the Z80 PIO chip are as follows :

												MODE MODE CONTROL WORD DESCRIPTION

 -------- --------------------------------- -------------------

 0 0Fh Byte Output

 1	 4Fh Byte Input

 2	 8Fh Byte Bi-directional

 3	 0Fh Bit Mode I/O

Of the above Modes for the Z80 PIO chip, Mode 3 is the most interesting. In this main circuit design, this mode has been implemented in Port A PIO 1. A description of the operation of PIO 1 will be given in full after this chapter on PIO 0.

PIO 0 is connected in the following manner, O means data flows toward the peripheral device and I means data flows toward the Z80 CPU from the peripheral device. :

PIO 0 - Z80 TO PC COMMUNICATIONS INTERFACE			

--

							

PORT A

O PA0 - PA7 configured as byte output to PC

PORT B

I PB0 - PB7 configured as byte input from PC

PORT A - all valid data flows away from the Z80 to the Pentium/80486. This port is mainly used for the programming sequences of the Z80 Card using PC software. Basically, data is entered upon the PC’s Keyboard by Hand, the Keyboard data is then coded and then is transferred to the Z80 system RAM using PIO 0. PORT B - all valid data flows into the Z80 system from the Pentium/80486. A full description of the use of PIO 0 has already been given.

PIO 1 - BIT I/O,& 7 SEGMENT DISPLAY DRIVER

--

This PIO is wired to most of the peripheral devices on the card and so justifies an in depth report. The following is a diagram to aid understanding of how the PIO is wired and to what devices send data to it, and what devices receive data from it.

PORT A - BIT I/O

O PA0 - PA2 output data to 7447 7 Segment Driver chip. O	PA3 - output on/off bit for NE555 generating NMI pulse O PA4 - output on/off bit for NE555 driving on board speaker

O *PA5 - output on/off bit switching on/off PC main power relay

 I *PA6 - input on/off pulses from phone amplifier circuit relay O PA7 - output bit to PC forming part of PC Comms using PIO 0

PA0 - PA2 these bits form the three quarter nibble that controls what number characters are displayed on the 7 segment display. as the first 3 bits of the 7447’s input nibble are wired, this means that the following is true :

INPUT DATA ON 7447 7 SEGMENT NOW DISPLAYING

												0 0 0 * Number 0

	1 0 0 * Number 1

	0 1 0 * Number 2

 1 1 0 * Number 3

	0 0 1 * Number 4

	1 0 1 * Number 5

	0 1 1 * Number 6

 1 1 1 * Number 7

The star ‘*’ character denotes that this input bit of the 7447 driver chip is tied to the GND connection and therefore is always the equivalent of 0.

PA3 - this PIO bit controls the switching off and on of the NMI pulse. Therefore the Z80 has the capability to switch on and off at will its own Non Maskable Interrupt. This piece of added hardware the bit switches, does in fact convert the NMI into another maskable interrupt line, although with not quiet the same software

programmable characteristics as the INT line.

PA4 - this PIO bit controls the switching on and off of the bell sounder on the Z80 Circuit board. The sounder is enabled upon the instigation of a NMI pulse to the Z80. The NE555 controlling the dispersion of these pulses is set to send an NMI every 12 Secs approximately. Upon reception of the NMI pulse, the Z80 leaves whatever it was doing previous, and starts executing the EPROM Machine Code program from 0066h onward. It is during the execution of this code that the Z80 comes across the instructions :

DB 0C IN A,(0Ch) get all bit status of Port A PIO 1

CB E7 SET 4,A change status of bit PA4 to 1

D3 0C OUT (0Ch),A switch sounder on

CD -- -- CALL, DELAY subroutine to allow enough time for sound

CB A7 RES 4,A reset to 0 PA4, prepare to switch off sound

D3 0C OUT (0Ch),A actually now switch the sound off

this sequence is roughly what the Z80 would expect to read without going too deep into the proper program, here the CPU registers would have to be preserved and then restored again once the subroutine CD -- -- would have completed execution by the Z80, otherwise the above program would goof up the system. You may ask why bother to set all this sounder business up in the first place ?, the answer is, the sounder on this card plays 2 very important parts, and they are respectively :

A)	so that the operator can tell if the card has received the NMI error

command from the PC or not.

B)	so that the operator knows that the Card is working properly suggesting that the Z80 is not only receiving the NMI pulses from the NE555, but also acknowledging the fact that the Z80 is itself still executing its Machine Code programming correctly, as the sound here can only be generated by the Z80 actually processing its program data, and then acting upon it thus.

PA5 - When this bit is high, the PC is actually powered up, as the electrical characteristics of the bit are amplified by a pair of high gain NPN transistors configured in the darlington arrangement. the output of these transistors switches 12 volts solidly across the solenoid of the PC’s power relay, thus energising the relay and

closing its contacts which are connected to the Main AC supply. The bit remains at logic 1 (+3.7V), and the relay’s contacts are thus kept closed, for the duration of the telephone call. Only when the Card has been sent a certain word from the PC, does the Card switch off the PC until the next call arrives. This happens of course when

the Z80 resets to 0 bit PA5, which then in turn de-energises the double transistor Darlington Pair in turn de-energising the relay solenoid and thus cutting off the power to the PC. The usual Semiconductor protection is provided by the 1N4001 diode clamped across the relay’s solenoid connections. In normal operation the diode is connected reversed biased across the solenoid’s switched 12 volt supply and thus does not conduct much current at all, but as soon as the transistors switch off the 12 volt supply to the relay, a large reverse biased current is momentarily generated in

the relay solenoid, but now the diode is forward biased and immediately short circuits this unwanted current out to nothing well before it can damage the Darlington Pair transistors, which is what would have happened had the diode not been there.

PA6 - this and PA5 are probably the most important two bits in the whole

Card. PA6 is an input bit. The data it receives is composed primarily of 1’s and 0’s that follow in sympathy with the ring (1) and silence (0) of the telephone. thus, only for the duration of each ring is this input bit at logic 1. This enables an infinite

combination of ring patterns to, not only be recognised and acted appropriately upon by the Z80, but also to be programmed into the Z80 system as a string of bytes, each unique distinctive ring pattern producing its very own unique train of bytes. once the

ring patterns have been stored as a group of bytes, it only remains for the Z80 to compare the incoming ring pattern with that of which is stored in its memory, and thus boot the PC with the appropriate host software if a match is found. If a match is not found, (i.e the standard National ring pattern for Vocal Calls), the Z80 ignores the call and the PC is not switched on and booted. This effectively enables up to 3 other numbers to be associated with your ONE telephone line !, and none of them will confuse. The operation of the peripheral device feeding PA6 is as follows :

two very high gain transistors are wired to form a two stage common emitter amplifier. the two transistors are directly coupled to each other collector to base. The hfe gain of this 2 transistor amplifiers somewhere in the region of about 10,000 - 12,000 times that of the AC signal appearing at the Base of the first stage. the Base

of this first stage is connected to a low impedance dynamic mic of about 600 Ohms, the input signal being in the strength of around 1 x 10^ -4 of an Ampere, a very small signal indeed. The 820K Ohm resistor coupling the emitter of the second stage to the Base of the first creates a stable environment for the AC audio signal to pass through. The 820pf Capacitor of the second stage reduces the high frequency response of the amplifier creating further stability. the AC audio signal now having many millivolts in strength appears at the cathode of the 10 Microfarrad capacitor that is connected

to the output collector of the second stage. The AC Audio signal is now half wave rectified by two signal diodes whose output pulses pump up a 0.33 Microfarrad Electroylitic capacitor. When the voltage at the Anode of this capacitor reaches approx 1.7 Volts the output Darlington Pair is switched hard on and supplies the full 12 volts

to the Relay thus energising it and creating a ‘1’ at the input of this bit PA6. A 1 remains constant while the rectified AC Audio Signal still keeps the 0.33 Electroylitic charged and the Base of the 1st stage of the Darlington Pair held positive and energised. but as soon as the telephone ring pauses the rectified AC Audio

signal stops feeding the 0.33 Electroylitic capacitor and disables current flowing to the Darlington Pair, which in turn switches off the relay, now PA6 is connected to GND via a 47K resistor providing an effective 0 to be input to the bit. thus a telephone bell sound equals a 1 on PA6, and no telephone bell sound equals a 0 on PA6. it is the Mark and Space Ratio length of these 1’s and 0’s that the Z80 is able to recognise and convert to Binary data appropriately using its system software in the EPROM

.

PA7 - Output Handshake bit for use by the Z80 in communication with the PC.

(undecided yet at the time of writing this whether or not to use ASTB and ARDY on the PIO, or this bit here. Will probably opt for the PIO controls!)

																										

